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Topics

Measurement of information
|. Image registration using information theory

Il. Imaging feature selection using information
theory

IVV. Image classification based on information
theoretic measures




Measurement & Information

Objective

Learn how to quantify information



Information and Uncertainty

Random Which char Decrease in
Generator comes Uncertainty
next?
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/ Both combined:  —10g(3) —log(2) = —log(6)

Note, we assumed each symbol is likely to appear at equal chance



More On Uncertainty

Random
Generator Which one Decrease in
Of M Symbols comes Uncertainty

next?

s, AB@
Lo > DCE$ @ 1oga/M)=-log(p)
o

Some symbols may appear more likely than others
—p, log, (p,)
Many : HShannon = _Z P; IOQZ ( P; )’ """ Z P = 1



Example: Entropy Of mRNA
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Lt 2t 2t 2
pA_z’pC_4’pG_8’pT_8

Bin:—10g,(p;): pPa=Lpc=2;ps =3;py =3

H =£-l+£-2+£-3+£-3=1.75 Bits per symbol
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Concept Of Entropy

Shannon Entropy formulated by Claude Shannon

American mathematician
*Founded information theory with one landmark paper in 1948

*Worked with Alan Turin on cryptography during WWII Rrepubelil

*History of Entropy

«1854 — Rudolf Clausius, German physicist, developed theory of heat

«1876 — Williard Gibbs, American physicist, used it for theory of energy

«1877 — Ludwig Boltzmann, Austrian physicist, formulated theory of thermodynamics
»1879 — Gibbs re-formulated entropy in terms of statistical mechanics

«1948 - Shannon



Three Interpretations of Entropy

 The uncertainty in the outcome of an event

— Systems with one common event have less entropy than
systems with various comment events.

 The amount of information an event provides

— An infrequently occurring event provides more information.
l.e. has higher entropy, than a frequently occurring event

* The dispersion in the probability distribution

— An uniform image has a less disperse histogram and thus
lower entropy than a heterogeneous image.



Generalized Entropy

* The following generating function can be
used as an abstract definition of entropy:

H (P) = h[ Z:\ilvi '@1(pi)]

M

Zizlvi - 0,(P;)

« Various definitions of these parameters
provide different definitions of entropy.

— Found over 20 definitions of entropy



Various Formulations Of Entropy

Names h(z) p1(7) pa(7) Vi
Shannon T —zlogx T v
Renyi (1-7r)"tlogx x’ T v
Aczel T —x" logx z" v
Aczel (s—71) gz a" t v
Aczel (1/s)arctan 2" sin(slog x) z"cos(slogz) v
Varma (m—7r)"tlogx gr T v
Varma (m(m—7))"'logx "/ T v
Kapur (1—-t)"logz glre-l 8 v
Hadra (1-s)"Hz-1) * T v
Arimoto (t—1)7 (2t = 1) !/t T v
Sharma (1—s)"1(e*—1) (s —1)zlogx T v
Sharma (1- ‘z’)_l(:f:i:i - 1) " T v



Various Formulations Of Entropy I

Names h(z) p1(x) pa () V;
Taneja x —z" logx T v
Sharma (s—7r)"la a" — 2t T v
Sharma (sins) "tz —z" sin(s log x) T v
Ferreri (1 - %) log(1+ ) — % (1+ Az)log(1+ Azx) x v
Sant'Anna T —xlog ( ) T v
9/2
sin(zs) _sinfas) sin(sx)
Sant'Anna ! 2%111(5*/2) (2 qm(s*/?)) ! ‘
Picard T —rlogx x w;
Picard x —logx 1 v;
Picard (1—r)"tlogz zr1 1 v;
Picard (1—-s)"'(e"—1) (s —1)logz 1 v;
Picard (1- :s*)_l(:;r:ﬁ —-1) a1 1 ;i




Entropy In Medical Imaging

Averaging | Map Histogram Entropy
N=1 H=6.0
N=40 H=4.0

Histograms H=3.9
image brain only .- o
Co-variance map H=10.1




Entropy Of Noisy Images

Signal-to-Noise - Map
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Image Registration Using
Information Theory
Objective

Learn how to use Information Theory for
Imaging registration and similar
procedures



Image Registration

« Define a transform T that maps one image onto
another image such that some measure of
overlap is maximized (Colin’s lecture).

— Discuss information theory as means for generating
measures to be maximized over sets of transforms

MRI




Entropy In Image Registration

e Define estimate of joint probability

distribution of images: AT &L B & ||
. | é | é |

— 2-D histogram where each axis
designates the number of possible
intensity values in corresponding image

0.005

0.003

— each histogram cell is incremented each
time a pair (I_1(x, y) | 2(x,y)) occurs in |
the pair of images (“co-occurrence”) T T

0.001

0.000 0.005 .10 0.015

Be-05

Joint 2D histogran
Of i images A and B

4e-05

— iIf images are perfectly aligned then the
histogram is highly focused; as the
Images become mis-aligned the B
dispersion grows

2e-05

oo 02 04 0B 08B 10

— recall one interpretation of entropy isasa > °* N
measure of histogram dispersion



Use Of Entropy for Image Registration

« Joint entropy (entropy of 2-D histogram):

H(X,Y)== > p(x,¥)-log,[p(x,y;)]

XieX ’yi eY

H(X.,Y)

« H(X,Y)=H(X)+H(Y) only if X and Y are completely
Independent.

* Image registration can be guided by minimizing joint
entropy H(X,Y), I.e. dispersion in the joint histogram for
Images is minimized



Example

Joint Entropy of 2-D Histogram for rotation of image with respect
to itself of O, 2, 5, and 10 degrees




reference image
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reference image current image

difference image Joint entropy = 7.48 M.|1= 359
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Alternative: Conditional Entropy

 Assume we know X then we seek the remaining
entropy of Y

H({Y [ X)
:—Z p(Xi)Z p(y; |Xi)'|0g[p(yi |Xi)]

Xi EX yl EY

== 2, P(x.y)loglp(y; [x)]

XiEX ’yi eY

p(y, %)
— _ LY, I I |
XZ;Y Pl y)og_ p(x)




Use Of Mutual Information for Image
Registration

Recall definition(s):
Q I(X,Y) = H(Y) - H(Y[X) = H(X) - H(X]Y)
« amount by which uncertainty of X is reduced if Y is known.

Q I1(X,Y) = H(X) + H(Y) - H(X,Y) )

* maximizing I(X,Y) is equivalent to minimizing joint entropy H(X,Y)

Advantage in using mutual information (M) over joint
entropy is that Ml includes the entropy of each distribution
separately.

MI works better than simply joint entropy in regions with
low contrast where there will be high joint entropy but this
Is offset by high individual entropies as well - so the overall
mutual information will be low

Mutual information is maximized for registered images



Formulation Of Mutual Information
In Terms Of Entropy

pP(Xi, ;)
1(X,Y) = AN ]
(%.Y) xzyly PO ) Ogip(xi)p(yi)]

 Measures the dependence of the two distributions
* |s related to relative entropy (will be discussed next)

* In image registration 1(X,Y) is maximized when the
Images are aligned

* |n feature selection choose the features that minimize
I(X,Y) to ensure they are not related.



Properties of Mutual Information

Ml is symmetric: I(X,Y) = I(Y,X)
1(X,X) = H(X)

— Information each image contains about the other

Image cannot be greater than the total information
In each image.

1(X,Y)>=0
— Cannot increase uncertainty in X by knowing Y
I(X,Y) =0 only if Xand Y are independent



Input
Images

Processing Flow for Image
Registration Using M.I.

Pre-processing

Probability
Density
Estimation

M.I.
Estimation

Image

Transformation

Optimization

Scheme

Output
Image



Measurement Of Similarity Between
Distributions

* Question: How close (in bits) is a distribution X to a model
distribution Q7?

P(X)
D(X ||Q)., = )] i
(X119 Xézp(X.) og(q(xi)]

Kullback-Leibler Divergence

e Dy =0onlyif Xand Q are identical; otherwise D, >0
o D (X]|€2) is NOT equal to Dy, (Q2]|X)

e Symmetrical Form 1

SD(X || €2) g, :E(D(X 1 €2) +D(Q|| X))



Uses Of The Symmetrical KL

How much more noisy is image A compared to image B?

Histograms sKL distance B from A

Histogram of X33
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Uses Of The Symmetrical KL

Detect outliers in a image series

#1

o i 5 . s .
Test similarity between #1 as

reference and rest based on
Brain mask of #1

skKL

5 10 15 20

Series Number



Image Feature Selection
Using Information Theory

Objective

Learn how to use information theory for
defining imaging features



Mutual Information based Feature
Selection Method

We test the ability to separate two classes
(features).

Let X be the feature vector, e.g. co-
occurances of intensities

Y Is the classification, e.g. particular
Intensities

How to maximize the separability of the
classification?




Mutual Information based Feature
Selection Method

 M.I. tests a feature’s ability to separate two
classes.

— Based on definition 3) for M.I.

p(X,Y;)
1(X.Y)= vl 0 i
(X,Y) Xi;y;p(X. Y;) og(p(xi)p(yi)j

— Here X is the feature vector and Y is the
classification
* Note that X is continuous while Y is discrete
— By maximizing the M.l. We maximize the
separability of the feature
* Note this method only tests each feature individually



Joint Mutual Information based
Feature Selection Method

e Joint M.I. tests a feature’s independence from all
other features:
(X0, X X Y) = D0 1KY [ X X Xy)

k=1,N

e Two implementations proposed:
— 1) Compute all individual M.l.s and sort from high to low

— 2) Test the joint M.l of current feature while keeping all
others
» Keep the features with the lowest JMI (implies independence)
» Implement by selecting features that maximize:

1(X,,Y)=B-D (X, X))



Mutual Information Feature Selection
Implementation Issue

M.l tests are very sensitive to the number of
bins used for the histograms

 Two methods used:
— Fixed Bin Number (100)
— Variable bin number based on Gaussianity of data

M., .. =10gN +1+log(l+x-+N/6)

— where N is the number of points and k is the
Kurtosis

1 4 3N
K= : X, —X) —,—
o*\J24N k;,N( =) 8




Image Classification Based On
Information Theoretic Measures

Objective

Learn how to use information theory for
Imaging classification
Learn how to quantify image complexity



Complexity In Medical Imaging

Complexity

eMany strongly interacting components introduce an
Inherent element of uncertainty into observation of a
complex system

eIn imaging, local correlations may introduce
uncertainty in predicting intensity patterns
eComplexity describes the inherent difficulty in
reducing uncertainty in predicting patterns

eNeed a metric to quantify information, i.e. reduce
uncertainty, in the distribution of observed patterns



Proposed Measures Of Complexity

—— . —
i Preprocess Reduce
: e.g. g.
#] Map to Atlas SeZnE’;lent
H: Metric Entropy ,
___—P(zZ)
H=-),P(Z,2")log-P(Z,2Z"
b4
2
Parse Over
‘/P(Z | Z) Reduced
> (X P(Z| Z)og(3 PZ | Z)) i
SC - l 0] I 1
II(Z' %2 2 Z,Z=.,.,D

SC: statistical complexity By Karl Young



Proposed Complexity Measures
1

* Metric Entropy (H) — measures number and uniformity of
distributions over observed patterns (joint entropy). For example, a
higher H represents increasing spatial correlations in image regions

« Statistical Complexity (SC) — quantifies the information, i.e.
uncertainty , contained in the distribution of observed patterns. For
example, a higher SC represents an increase in locally correlated
patterns.

« Excess Entropy (EE) — measures convergence rate of metric
entropy. A higher EE represents increase long range correlations
across regions



Application: Capturing Patterns
Of Cortical Thinning

Brain MRI Histological Cut

Cortical ribbon

>

\




Complexity Based Detection Of Cortical
Thinning (Simulations)

Right Superior Temporal Gyrus (Cortical Thinning in 25 Subjects) Left Superior Temporal Gyrus (No Cortical Thinning)
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H, SC, and EE automatically identify cortical thinning and do a good job at separating the groups
for which the cortex was thinned from the group for which there was no thinning



Patterns Of Cortical Thinning In
Dementia Using Voxelbased
Morphometry

Alzheimer’s Disease Frontotemporal Dementia




Detection Of Cortical Thinning Pattern In
Dementias Using Complexity Measures
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RGB representation: H; EE; SC;,

More saturated red means more spatial correlations;

More saturated green means more long range spatial correlations;

More saturation of blue means more locally correlated patterns;

Simultaneous increase/decrease of H,EE,SC results in brighter/darker levels of gray



Complexity Based Classification

13 Brain Regions

o AD

A FTD

L
B>< > > >
> > > D

LD2

LD1



Summary

Metric Description

Entropy Decrease in uncertainty of a random
observation

Joint entropy Simultaneous decrease in uncertainty of
multiple random observations

Conditional entropy Remaining uncertainty of one random
observation given the probability of
observations from another distribution

Mutual Information Mutual dependence of random
distributions

Kullback-Leibler divergence Similarity between random distributions

Statistical complexity Uncertainty in the distribution of

correlated patterns
Excess entropy Convergence of joint entropy
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